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Abstract: Some of the most efficient methods for studying systems

having a large number of degrees of freedom treat a few degrees of freedom

quantum mechanically and the remainder classically. Here we examine how

these methods fare when used to calculate the cross section for photon absorption

by a quantum system imbedded in a medium. To test the method we study a

model which has two degrees of freedom and mimics the properties of an one

dime, ional alkali atom - He dimer. We treat the electron motion quantum

mechanically and the distance between the He atom and the alkali ion classically.

Light absorption occurs because the electron is coupled to radiation. The

calculation of the absorption cross section by quantum-classical methods fails

rather dramatically- at certain frequencies the absorption coefficient is negative.

By comparing with exact quantum calculations we show that this failure takes

place because the time evolution of the classical variables influences the dynamics

of the quantum degree of freedom through the Hamiltonian only; important

information, which a fully quantum treatment would put in the wave function, is

missing. To repair this flaw we experiment with a method which uses a swarm

of classical trajectories to generate a "classical wave function". The results are

encouraging but require substantial computer time when the number of classical

variables is large. We argue that in the limit of many classical degrees of freedom

accurate calculations can be performed by using the time dependent Hartree

method and treating some degrees of freedom by exact numerical methods ( e.g.

an FFT procedure) and the others by Gaussian wave packets or any other

propagation method that is accurate for a very short time. This procedure leads to

a simple time domain picture of dephasing and line broadening in the case of a

localized quantum system imbedded in a medium with heavy atoms.
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L Introduction

Calculations in which several degrees of freedom are treated quantum

mechanically and the remainder classically are very popular [1 ]. All such

algorithms divide the degrees of freedom in two classes denoted here symbolically

by q and c. The dynamics of the q-degrees of freedom is determined by solving the

time dependent Schrdinger equation

i h-p(q ;tk't = ( K + V(qc(t))] V(q ;t). (1.1)

The kinetic energy operator K depends only on the coordinates q. The classical

coordinates in the potential energy are replaced by their classical values c(t) at

time t. The latter satisfy the classical equation of motion

m d2c(t ffdt2 = {f dq V(q ;t)* V(q,c(t)) i(q ;t)}i/c(t), (1.2)

where the interaction energy is averaged over the quantum degrees of freedom.

Other choices for the classical equation of motion are possible; the one given above

is the most popular. In what follows we call any method described by algorithms

based on (1.1-2) a traditional quantum - classical method (TQC). The name

quantum-classical method (QC) is reserved for a method proposed here which

uses classical trajectories to construct a wave function for the c-degrees of

freedom.

In this algorithm the properties of the classical degrees of freedom are not

described by a wave function. They influence quantum dynamics as time
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dependent parameters in Eq. (1.1).

Because of the large number of applications to a great variety of problems

it is not possible to make a broad statement regarding the accuracy of this

procedure. Wahnstrom et al (le] have used it to calculate the correlation

functions appearing in the theory of the rate constant. They found that the results

given by the quantum-classical (TQC) method were very close to the fully quantum

ones, as long as the mass of the classical degrees of freedom was sufficiently

large. Alimi et aL[ld] compared the dynamics of a wave packet (describing the

quantum degree of freedom) coupled to a classical particle, to the exact quantum

behavior of the same system and were satisfied with the results. Both studies

were interested in short time dynamics of systems for which the wave function

describing the q-degree of freedom did not split into spatially separated pieces.

These conditions favor the TQC method [2].

In discussing the results of the TQC method we found it useful to

distinguish two kinds of quantities: observables that have a classical

interpretation, which have the form

('Wt 101 V,t), (1.3)

where I V,t) is the wave function at time t and 0 is an operator representing a

physical quantity, and quantities that do not have a classical analog, which have

the form

(V,t 10 I ) , (1.4)



5

where I V,O ) is the wave function at time zero.

All the examples which have shown that the TQC method works well

have calculated observables that have a classical interpretation. In this article we

examine whether the same is true when non-classical quantities having the form

(1.4) are computed. The calculation of the cw absorption and Raman cross

section by time domain methods (i.e which use Heller's [3 1 formulae) provide

important examples of such quantities. There are very few examples* of the

computation of an absorption cross section by TQC methods. Gerber and Alimi[lc]

have reported in passing one calculation of an overlap integral between and initial

wave function and its value at time t. In our opinion the results were fairly poor

even at early times when the method is expected to perform best. Another such

calculation was performed by Thirumalai, Bruskin and BerneEld] who calculated

the absorption spectrum of Br 2 in an Ar matrix. They treated Ar motion

classically and the Br 2 bond length by Heller's Gaussian Wave Packets (GWP)

method. These authors were mostly interested in the adequacy of the GWP for

describing the quantum degree of freedom and not in testing the quantum-

classical procedure.

Our study is carried out by performing numerical experiments on a two

dimensional model for which the absorption cross section can be computed fully

quantum mechanically by numerical methods. The accuracy of the TQC method

is then determined by comparing its results to those of the exact quantum

calculations. The TQC results are extremely poor. the absorption spectrum (i.e.

the absorption rate) is negative at some frequencies.
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The model has not been devised to give the TQC method trouble. It

consists of an ionic core, an electron and a He atom interacting through

reasonable potentials. The position of the electron is treated quantum

mechanically and that of the He-ion distance classically. The electron is coupled

to the electric field of the laser and absorbs light; the He atom influences this

process only through its action on the electron. One can think of this as an one

dimensional model for a Na atom weakly bound to a He atom. Since the electron

is the main actor in the absorption process and He has a supporting role, one

would expect that not much is lost if Hie is treated classically. The mass disparity

between the two particles is large and the time in which the electron samples its

environment to build the structure in the spectrum is extremely short. Both

conditions increase the chance that a quantum- classical treatment will give

reasonable results.

The negative absorption rate is not an accidental property of our model. It

is also present if we change the potentials to mimic the system HIHe for which

the TQC method gives good results for quantities that have a classical analog[ld] .

The failure is not caused by the low dimensionality of the model: the absorption

cross sections of 12 Xejo or e-Na+Xelo has the same unpleasant feature[41.

By experimenting with the model we found that the negative rate appears

because the TQC method approximates the total wave function 'P(q,c;t) with

'P(q,c;t) - W(q;t). (1.5)

This contains no information regarding the c-degrees of freedom. The latter



7

affect absorption only because their classical motion modulates the potential

energy in the Eq. (.1) describing the time evolution of V(q;t). To avoid this

oversimplification we use

I (qc-t) - q(qt) A(c;t) exp(i S(c;t)/h), (1.6)

Here A(c;t ) and S(c;t) are real functions of the positions of the classical particles.

A and S are calculated by propagating a swarm of classical trajectories whose

initial conditions mimic the initial quantum state of the c-degree of freedom. The

square root of the density of these trajectories in the neighborhood of the point c at

time t gives A(c;t); S(c;t) is the sum of the principal Hamilton functions for the

trajectories that have reached the neighborhood of c at time t. The absorption

spectrum calculated from the wave function '(qc;t) defined by the above

procedure is close to that obtained by the exact quantum calculations. The

accuracy deteriorates for long time calculations and therefore the method is not

useful if one is interested in low resolution spectra. In the case that the system is

imbedded in a condensed medium this is not a handicap; the spectra of such

systems are broad and thus are not altered by low resolution measurements.

This calculation requires about the same amount of computer time as the

traditional TQC method. The method can be used to calculate Raman spectra,

electronic absorption spectra and to solve curve crossing problems. Since we have

not derived validity criteria for this approximation it is not prudent to use it in

new applications without testing it on simplified models for which exact

calculations are possible.

The reasons for the failure of the TQC method are then examincd in the
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context of HeUer's [3a] time dependent description of the absorption spectrum. As

was explicitly pointed out by Hellerf3c] and by Messina and Coalson[41 all the

degrees of freedom in a complex system affect the absorption line shape. In the

present case the medium's degrees of freedom influence the absorption spectrum

because overlap of their wave function at a time t with the initial wave function

decays with t [3 a] on a time scale which gives the spectrum its width. The TQC

method erroneously assumes this decaying overlap to be equal to one. The

calculations reported here show that the error cause by this replacement is

dramatic and of a qualitative nature.

A detailed analysis ( Section VII) suggests that when the excitation of the

absorber affects a large number of the degrees of freedom in the medium, the

absorption cross section can be accurately calculated by using short time

quantum methods to describe the dynamics of the medium's degrees of freedom.

This is extremely efficient computationally. Unfortunately it works only for a

large number of classical degrees of freedom and therefore its accuracy cannot be

tested by comparison with fully quantal numerical results.

IL The Models

To test various TQC procedures we calculate the absorption spectrum of a

colinear system consisting of an electron (located at r), an ion of infinite mass

(located at the origin) and an atom having the mass of He (located at R). The

interaction energies are physically reasonable but do not represent accurately the

alkali -He system. Nevertheless, we will use the names alkali atom (or ion) and

He for the particles defining the system.
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The alkali ion - electron interaction energy Vei is

Vej (r)=- e2 /r, if r < r.

Vei (r) e2/r if rc<r. (11.1)

e is the electron charge and r. is a cutoff parameter whose value is

specified below. Eq.(II.1) was suggested by Shaw[6a] and has been used by

Rahman and Parinello[6b] , Selloni,Carnevali,Carr and Parinello[71 , and Haug

and Metiu [81.

The electron-helium interaction energy is that used by Coker, Berne and

Thirumaaii [91 (for electron-xenon)

Vm ( X Y, (a/X4) [ b/(c+X6)-1], (11.2)
n

where

X= min (Ir-RI , Re, (11.3)

a = 26.86 eVA4 , b = 108.0 A6 , c = 83.29 A6. The cutoff distance RC = 0.5 A makes

the potential finite (and constant) at short distances. The total electron interaction

energy is

Vn(rR) = Vei(r) + Vea(r,R). (1.4)
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The alkali ion -helium interaction energy is given by a harmonic potential

which roughly approximates the potential well of the potassium ion - xenon

interaction[10

Via(R) = (1/2)MOR 2 ; (U.5)

R is the atom-ion distance and o) = 0.1 eV.

The momenta associated with the positions (rR) are denoted by (p1'). The

Hamiltonian is

H = Hia(R, P) + Han(r,p;R).. (11.6)

H, , describing the ion - atom internuclear motion, is given by

H. = P2 / (2M) + Via(R). (11.7)

The term

Hen= p2/(2m) + V6n(rR) (11.8)

contains the kinetic energy of the electron plus its interaction energy with the ion

and the rare gas.



ML Exact and time dependent Hartie calculation of the absorption ross section

The absorption cross section a(wo) for a system initially in the ground state

I'Fg)is

G(O) - Ref dt exp(iot) C(t), (I.1)

with

C(t)= exp(iEgtb) (Ip (0) I p (t)). (111.2)

(lp (0) 1'p (t) is the overlap integral between the promoted wave function

I~p )=-r IT g)1 (111.3)

at time tW0 and the promoted wave function

I~~t I -- U t~lp (III.4)

at time t. U(t) is the molecular (the field is not included) propagator, Eg is the

ground state energy and r is the electron position.

These equations are similar to those proposed by Heller [3 a], except for the

fact that the transition dipole matrix element in the Heller formula is replaced by

the electron position. This modification is necessary because we treat the electron

motion explicitly.
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The spectra reported here are calculated from

- Refo dt W(t) exp(icot) C(t). (III.5)

This equation gives a low resolution version of the exact spectrum. The peak

width Aco - 2x/ is set by the time constant z in the "window" functionE11 3

f4(t) = exp[-( t / z )2 ]. (111.6)

The computation of the ground state and of the promoted state evolution

are sketched in Appendix A.

The starting point of all TQC procedures is the assumption that there are

no statistical (i.e.quantum) correlations between the q and c variables ( i.e. the

wave function has the form O(q)x(c)). For the simple system considered here this

approximation is identical to the time dependent Hartree (TDH) approximation.

To distinguish the errors introduced by neglecting quwntum correlations from

those caused by using classical dynamics we perform calculations with the TDH

method and compare them to the exact ones. In the TDH calculations the ground

state and the promoted state have the form

(rRIFg)- (rog) (RIxg) exp(iig/h). (111.7)

and
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(rRI Ip) (r I r Ig)(RI xg) exp(iqg/h) a ( r I p) ( R I Xg) exp(ig/h) (111.8)

The phase exp(irqh) - which is called in what follows the Hartree phase - is

introduced to simplify the form of the TDH equations of motion.

Substituting the Hartree form (111.8) of the wave function into the

Eq.(IH.2) for the overlap integral leads to

Ch(t) = exp(iEgt/h) (Op(O) I Op(t)) (X(O) I Xg(t)) exp(i(ig(t)-i1g(O)l/h).

(111.9)

The notation Ch(t) indicates that the overlap integral is calculated by using the

TDH wave function. The latter are obtained by solving the TDH equationst(11.

ih - lp) = ( p2/2m + Vei(r) + (XgI Vea(rR) IXg) (xgI Xg)] I0p), (I1.10)

aih- lx) = [ P2/2 M + Via(R) + OplVea(r,R)lOp) I Op) I Xg), (III.11)

and

g = (pXgIVea(r R) I Xgop / (igl Xg) (OP I OP) (111.12)

The Hartree ground state energy is

Eg = ( gI p 2/2m+Vei(r) 10 )/ (g I g) + (Xg1 P2/2M+Via(R) IXg)/ (ZgIxg) +

(OgXg 1 Vea(rR) I Xg~g) / (xgI Xg) (OP Ip. (111.13)
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In the Appendix B we show that the use of the Hartree approximation in

the equations (I. 1-5) leads to several formulae for the cross section which are

not equivalent to each other. The version presented above is the simplest and

more accurate (i.e. for the present model it gives the closest results (but still poor)

to the exact quantum calculations).

In Fig. 1 we compare the absorption cross section given by the TDH (Fig.

la) with that obtained by exact quantum calculations (Fig. 1b). The spectrum

consists of an electron excitation (at about 3.75 eV) and vibrational side bands due

to the alkali-helium oscillations. The TDH calculation reproduces the intensities

and the positions of the main peaks. It gives small negative absorption

coefficients for a few frequencies, but the overall accuracy is satisfactory.

IV. The Traditiona" Quantum -Classical Method.

To calculate the overlap integral leading to the absorption cross section by

the TQC method we use the wave function

(r,R I p )-( r IOpz (r I r I g) (IV.1)

Compared to the TDH wave function (III.7-8) the equation (V.1) neglects

the wave function for the classical degrees of freedom and the Hartree phase 1Ig.

With this assumption the overlap integral (111.9) becomes

Ctqc(t) = exp(iEgt/h) (p(O) IUtqc(t) I Op(O)). (IV.2)
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The subscript tqc indicates the use of the traditional quantum-classical

method. The propagator Utqc(t) is the formal solution of the equation

ih! I = [p 2/2m + V(r) + (Vea(r,t)R] I)R (IV.3)

In other words Utqc(t) I p(0)) is solution of Eq. (IV. 3) with the initial condition

I p(O)). The interaction between the quantum variable r and the classical one is

given by

N

(Vea(r,t) )R = 1 Vea(rRn(t)). (IV.4)
N n-i

The position operator R in the interaction is replaced by its classical value at time

t. To calculate this mean potential defined by Eq. (1V.4) we run a bundle of N

trajectories whose initial conditions are sampled by a Monte Carlo procedure

from a suitable distribution ( see Section VI). (Vea(rt))R is the average of the

electron - He interaction over these trajectories. The use of this average was

suggested in Ref. 1d; it is consistent with the averaging that appears in the TDH

equation (I1.10). Most applications of the quantum-classical method use one

trajectory.

The equation of motion for each of these trajectories is

M d2R/dt2 = - a{ Va(R)+( p(t) I Vea(rR) I p(t)) }/MR. (IV.5)
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The second term on the right hand side of (IV.5) is the mean interaction between

the quantum and the classical degree of freedom. Note a serious dynamic

inconsistency of this scheme: the q - c interaction used in the time dependent

Schrodinger equation is different from the q - c interaction used in the Newton's

equation for the classical variables.

The time dependent Schrddinger equation (IV.3) and the classical

equation (IV.5) are solved self-consistently. At time zero the Monte Carlo

procedure generates the initial conditions for the classical trajectories. This gives

a set of values Rn(t=O), n=1,2,...N, which are used to calculate the mean potential

(IV.4) which enters in Eq. (IV.3). Once this potential is known we propagate the

wave function I p) for a time step c and determine (r I pr). This is then used to

calculate the mean force in Eq. (lV.5) which is then solved to obtain Rn(,c) after a

time step c, for all n. If, for example, we propagate simultaneously one hundred

trajectories, we solve simultaneously a hundred classical equations and the time

dependent Schridinger equation for I Y.

This definition of the TQC procedure is not unique. For example we

might have preserved the phase Tig appearing in (I.8) and solve

N

7Ig- =NI 7 ( p,tlIVea(r,(t))lI p't) / (p,t I 0,t) (IV.6)

N n=I

which is the quantum - classical version of Eq. (M1.2). We experimented with

such variations and found that they do not give better results.

In Fig.2 we compare the absorption spectrum calculated with the TQC
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approximation to that given by the TDH calculation. The negative absorption rate

at lower frequency (Fig.2a) is absurd: the intensity of a weak beam of light will

grow exponentially as it penetrates a sample having this property. The positive

peaks at higher frequency resemble the correct spectrum except for a downward

shift of about 0.1 eV. One reason for its presence is the inability of the classical

mechanics to reproduce the zero point energy of He after the excitation of the

electron; the zero point energy of He when the electron is in the ground state is

taken into account through the MC sampling.

Other versions of the TQC procedure (i.e. using one trajectory only,

keeping in the quantum-classical theory the phase 1ig introduced when the TDH

approximation is made, using a slightly different formula for the absorption cross

section ( see Appendix B)) either do not improve the results or make them worse.

V. The need for a "classical wave function".

Previous[51 TDH calculations of the absorption spectrum of 12 in an Ar

matrix were in agreement with the experimental measurements. The results

presented in Section III, a, . other calculations whose results are not reported,

show that the TDH approximation gives a reasonable absorption cross section for

the systems considered here. The absorption coefficient takes only small negative

values. The spectrum does not deteriorate as the cut off time is increased form

100 fs to 600 &

Therefore, in the kind of examples considered here the large negative

.'ibsorption coefficient in TQC does not come from the use of the TDH

approximation, but from treating the dynamics of R classically. This involves two



kinds of approximations: the neglect of the wave function for R and the use of a

swarm of trajectories to calculate the mean potential acting on the quantum

degrees of freedom. The use of a mean interaction can lead to substantial errors

when the wave function of the quantum degree of freedom splits into spatially

disjoint pieces or becomes very delocalized[2]. This is not the case in the present

examples: the wave function of the excited electron in the alkali atom is well

localized. Moreover, if the mean potential were a source of error the TDH

procedure, which uses a very similar mean potential, should also produce errors

and it does not.

We are led therefore to suspect that the reason for the negative absorption

coefficients in the TQC calculation is the absence of a wave function describing the

behavior of the c-degrees of freedom; -that is, the use of Eq. (IV. 1) and its

consequence (IV.2)). That approximation assumes implicitly that whatever is

missed by removing the classical degrees of freedom from the total wave function,

is made up through the action of the time dependent potential ( (Vea(r,t))R given

by Eq. (IV.4) ) appearing in the Hamiltonian for the quantum degrees of freedom (

Eq. (IV.3)). This potential oscillates on a time scale set by the classical motion of

the medium and this affects the electron's wave function. The random motion of

the classical bath will dephase the quantum degrees of freedom and broaden the

peaks in the spectrum It will also cause energy exchange between the c and the

q degrees of freedom, leading to sidebands in the spectrum. The potential may or

may not do that, but unfortunately it also has the unfortunate effect of giving

negative absorption coefficients and spurious side bands.

To demonstrate that the difficulties encountered by the TQC calculations

are due to the suppression of the wave function for the c-degrees of freedom, we
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have performed the numerical experiments described below. These

"experiments" are conducted within the TDH approximation, which does not

suppress the wave function for the c-degrees of freedom. This wave function

contributes an additional term in the overlap integral used to calculate the

absorption spectrum; one can say that the main approximation in the TQC

method is to replace this additional term (i.e. (Xg(O)I Xg(t)) exp(iig/h) in Eq. (IV.2)

) by one (compare (IV.2) to (IM.9)).

The Fig.3a shows the spectrum obtained by using the correlation function

Ca(t) = exp(iEgt/h) (p(O) I 4p(t)). (V.1)

instead of C(t) of Eq. (H1.2). The correlation function formula for the absorption

spectrum is the same as in the TQC procedure but the wave functions Iop(t)),

I Op(O)) and the ground state energy Eg are calculated by solving the TDH

equations (UI.10-12), not by using the TQC dynamics.

The spectrum calculated without (Xg(O) I Xg(t)) is as bad as the one

generated by the TQC procedure, even though we have use the TDH dynamics to

perform the calculations. It has the same red shift of about 0.1eV, a large

negative amplitude and an erroneous but small absorption peak at the red side of

the fundamental peak. The close similarity between these two calculations

confirms our statement that the poor results for the spectrum come from the c-

wave function suppression.

Next we perform further experiments to try to understand how various

parts of the c- wave function influence the calculated absorption spectrum. First
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we perform a cross section calculation in which the overlap (X(O) I X t)) is left out

but the phase factor exp(i[igt)-ilg(O)]/h) is included. That is we use

Cb(t) = exp(iEt A) (p(O) I Op(t)) exp(i[Tlg(t)-Tig(O)/h). (V.2)

instead of Eq.(IH.9). The resulting spectrum is shown in Fig. 3b. There is a

minor improvement but the negative absorption coefficient is painfully visible.

In Fig. 3c we show the spectrum obtained by using

C(t) = ezp(iEgtih) (Op(O) I p(t)) exp(i(Tig(t)-ig(0)]/h) I (x (O) I xg(t)) I

(V.3)

which includes the absolute value of (xg(O) I Xg(t)).

Fig. 4d shows the one obtained by using

Cd(t)=exp(iEgt/hXp(O) I Op(t))exp(i[Tlgt)-lg(0)]/hXXg(O) I Xg(t))/I (Xg(O) I Xg(t))l (VA)

which contains only the phase of (Xg(O) I Xg(t)). The results show that (Xg(O) I Xg(t))

makes its most important contribution to the cross section through its absolute

value.

The main conclusion of this section is that to obtain good spectra by a QC

method we need a reasonable approximation to (zg(O)I zg(t)), or at least to

I (zg(O) I zg(t)) I. The replacement of the overlap of the c-wave functions with one -

which is made in the TQC method - is not tenable. The physical reason for this is
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discussed in Section VII, where we also suggest better and more efficient

approximations.

VL The classical wave function

To obtain a wave function for the c- degrees of freedom from classical

trajectories we write the c-wave function X(Rt) as

x (R,t) = A(R,t) exp[ i S(R,t) / h]. (VI. 1)

where A and S are real functions. Inserting this form into the time dependent

Schr5dinger equation leads to[131

-S + (V S )2 /2M + Vei(R) + ( P(t) I Ve(rR) I p(t) )-(h2 /2MA )W2 A =0 (VI.2)

and

A +V (A2 VS/M)0. (VI.3)

One can showt 13] that

A(Rt)2 If dR x (Rt)*S(R-R')x (R,t) (VI.4)

is the particle density at the point R and



A(R,t)2VS(R,t)/M=f dRxz(R',t)* {(P/M)B(R-R')+ {S(R-R')(/M)} X(R,t) (VI.5)

is the mean particle flux through the unit area located at R Thus both S and A

are related to the expectation values of operators (i.e. the density and the flux

operators) having a well defined classical meaning. As we have already pointed

out in the introduction we expect methods based on classical dynamics to work

better when applied to quantities that have a physical meaning in the classical

limit.

To calculate classically A(R,t) and S(Rt), hence the wave function X (R,t) =

A(R,t) exp[ i S(R,t) / h] which has been discarded by the TQC, we use the method

described below. This is based on the well known observation that when the

"quantum force" (h2 /2MA)V 2A is negligible the Eq. (VI.2) resembles the

Hamilton Jacobi equation[14] of classical mechanics. We construct a solution of

this equation by running a swarm of classical trajectories with initial conditions

generated by a Monte Carlo procedure designed to mimic the information

provided by the initial wave function for the degree of freedom R. That procedure

is described later in this section. To construct solutions of the Eq. (VI.1) and

(VI.2) (with the quantum term absent) we discretize the variable R and denote by

R1, .. R- ,.. the discrete points. The value of the function A(R,t ) at Ri is defined as

the square root of the density of trajectories present in the bin in which Rt is

located. The value of S(Rt) at Ri is given by

S , , ) i sa(t)xi  NIX)
CL
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where ,t
sa (t) - dt{Pt(t)Ra(t) - H[Ra(t), Pa(t)]) (VI.7)

is the classical action for the trajectory a and Xi restricts the sum in Eq. (VI.6) to

those trajectories that are, at time t, in the bin containing Ri.

This procedure is justified as follows. If we define

= p (t)2  (VI.7)
ai(t)

then the quantities S(Ri,t) and P(RI,t) satisfy Eq.(VI.2) without the quantum term.

This is true because the quantities s. and p,, satisfy the Hamilton Jacobi

equation [14]. Note that the definition

p(R,,t)2 = ( 7, pa(t) 12

would not lead to a solution of (VI.2).

To complete the procedure we must provide a sampling rule. We use the

probability I z(RO) 12, provided by the initial wave function for the variables to be

treated classically, to generate ( by Metropolis sampling) an initial value for R,

which we denote R0. Then we use the equation

Po = ± ( 2M C E- Eq(Ro) - Via(R o) I ) M. (VI.9)

to calculate an initial momentum P0. Here E is the total energy of the system and
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Eq(R) is the energy of the quantum subsystem when R=RO. If Po is imaginary we

reject R0 and try again. If it is real we accept (P0 ,Ro ) and (-Po R Ro as initial

conditions. We repeat the procedure until several hundreds of initial conditions

are generated. These initial conditions are then used to generate the swarm of

trajectories. The swarm and the wave function for the quantum degree of

freedom are propagated self-consistently by solving the simultaneously the

equations (IV.3-5).

The sampling rule is not unique and many other procedures are

available. The one used here attempts to put into the classical initial conditions

the physical information contained in the initial wave function: the total energy

and the position distribution for the degree of freedom to be treated classically.

The replacement of X(R,t) in the Hartree correlation function of Eq.(lI.11)

by the "classical wave function" A(R;t) exp(iS(R;t)/h gives

Cqc(t)- exp(iEgt/h) (¢p(O)IOp (t) ) (X(R,O) I X(R,t) ), exp( i(t~h). (VI. 14)

The subscript qc denotes a QC calculation. The "classical" overlap term is

((R,O) I x(R,t) )c = f dR A(R,O) exp(-iS(R,O)/h) A(R,t) exp(iS(Rt)/h) (VI. 15)

and the ground state energy is



Eg( gI (p2/2m + Vow(r) + (Vea(r))RII g)/(0gI g) +
N

1 [Pn2 /2M+Via(Rn) ]. (VI.16)
N n-I

Since the trajectories are calculated after the Monte Carlo sampling generates the

initial positions and momenta, the sampling weight does not appear in the sum

(i.e. the sum is calculated by the Monte Carlo procedure). The Hartree phase

term

Vt) = 1(t) - 11(O) (VI.17)

in (VI.14) is

ft NUt) = fodt ( p(t) I N .rRO p(t') /( p I p V.8
Nn-1

This sum is also calculated by the Monte Carlo procedure and the Monte Carlo

weight does not appear in the sum.

We note other procedures that use similar algorithms to generate wave

functions or other time dependent quantum amplitudes. Recently Heller 1 5 3

presented an interesting implementation of the semiclassical formula [16 ' for the

time dependent propagator. A different method, proposed by Olson and

?&Cha[17&], has been used in the time dependent theory of photo-dissociation 1l 7b ].

In Fig. 4, we compare the spectrum obtained by using the QC correlation

function of Eq.(VI.14) with the TDH spectrum (which is practically exact). The
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large negative cross section (that appears in the TQC calculation) has

disappeared. The band head position is still shifted by about 0.1eV; this happens,

in part, because classical dynamics does not give the R degree of freedom a zero

point energy in the excited state of the electron.

To better understand how various elements of the classical wave function

affect the spectrum we have performed calculations similar to those described in

Fig. 3, except that we have replaced the TDH procedure with the method described

in section. The results are very similar to those presented in Fig. 4 and are not

given here. The most important contribution to the spectrum is made by the

quantity

KX(R,0) I X(R,t) )cI =f dR A(R,0) A(R,t)cos(S(R,t)/h)} 2 +

If dR A(R,0) A(R,t)sin(S(R,t)/h)12

The phase S(R,t) of the classical wave function is important, but the phase of

((R,0) I X(R,t) ). is not.

Calculations on a system mimicking the HIAr system, in which the

hydrogen atom is treated quantum mechanically and Ar is treated classically

lead to similar results. This suggests that the conclusions of our analysis are not

system dependent.

VlI Summary and discussion.

The present calculations have shown that the TQC method can give

physically absurd results (e.g negative absorption coefficients) when used to
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compute absorption cross sections, and perhaps other quantities that do not have

a simple classical interpretation. Several numerical experiments have been

performed to determine the source of error. They established that (a) the TDH

calculations give good results for the system of interest here (confirming the

conclusions of Messina and Coalson[12]). (b) If we perform TDH calculations but

remove - from the equation for the absorption cross section - the overlap integrals

corresponding to the c-degrees of freedom we obtain again negative absorption

coefficients. This indicates that the source of the error is not the use of classical

dynamics to find the mean time dependent interaction between the electron and

the classical degrees of freedom, but the absence of a wave function for the

classical degrees of freedom. The TQC method approximates (in the formula

giving the cross section) the overlap integrals for the c-degrees of freedom by one.

Our "experiments" have shown that this is a particularly unfortunate choice. (c)

One can use classical trajectories to calculate the overlap integrals in the formula

for the absorption coefficient, to obtain satisfactory results.

In this section we examine in more detail why TQC fails. This analysis

also leads us to suggest a computational method that is likely to give good results

for the spectrum of an impurity in a condensed medium. For concreteness we

consider a one electron atom imbedded in a medium. The analysis and its

conclusions are generally applicable.

Within the TDH approximation the absorption cross section is determined

(see (M1.1-4)) by the overlap integral

N
C(t)= ( tI ,O)j ((i't 100,) (VIIl)

i=1



28

Here 14 ,0 )- x 4g ,0 ) is the promoted state of the electron. The

electronic contribution (1 ,t I ,0 ) gives the positions of the atomic absorption

lines; the overlaps (%I,t i,O) give these lines a width and generate vibrational

side bands (if any). We concentrate now on understanding the properties of the

product of nuclear overlap integrals, by using methodology developped by

Heller[31.

In the absorption cross section formula the atoms of the medium are in

their ground state at time zero. Their potential energy is given by

Vg (R) f dr (r, R,t-O ) V(r, R) g (r, R,t0). (VII.2)

Here R is a symbol for all the atomic positions, g (r, R,t=O ) is the ground state

electron wave function and V is the electron - medium interaction energy. At

time zero the medium's atoms are located around the positions Rg which

minimize V (R).

When we start the absorption cross section calculation the Heller formula

requires us to place the electron in the promoted state p(rR,t=O) = -x g(r,R,t-O).

The potential energy felt by the atoms of the medium is now

Vp (R) f dr p (r, R,t-=O ) V(r, R) (r, R,tO). (VII.3)

The equilibrium positions Rp appropriate to the "promoted electron" state
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minimize VP (R) and differ from Rg. As a result at a time immediately after zero,

the force

F = - aVp(Rs) (VII.4)

on the medium's atoms is finite and pushes them away from Rg, towards Rp. As

a result, all the overlap integrals in Eq. VII.1 will become smaller in a very short

time. To this Hellerian [31 analysis we add an important observation made by

Nitzan [ 181 in connection with the rate of radiationless transitions: If a sufficiently

large number of the medium's atoms are affected by the "promotion" of the

electron, their overlap integrals (O,t I j,O) will all start decreasing and their

product in Eq. (VII. 1) will decrease very rapidly. This has an extremely

important consequence: larger the number of atoms coupled to the electron,

shorter the time needed for the calculation of the absorption cross section!

In what follows we show that this time can be so short that the atoms of

the medium do not have time to sample the potential energy surface; as a result

the latter can be described by a local harmonic approximation. This makes it

possible to apply Heller's Gaussian wave packet (GWP) method 3b] to describe the

quantum dynamics of the atoms in the medium with high accuracy. The

outcome is that a method using the TDH approximation and treating the

medium's atom by a Gaussian wave packet method and the electron exactly will

give very good results for the absorption cross section for large systems.

Moreover, larger the system, better the results!

Let us assume that the time in which the product of the overlaps decays
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is so short that, for the duration of the decay, we can use a harmonic

approximation for the forces acting on the medium's atoms. This allows us to

use the short time analysis employed by Heller, Sundberg and Tannor [3d] in their

discussion of Raman spectra, to determine the decay time and test whether it is as

short as assumed. For simplicity we treat the medium's atoms as independent

harmonic oscillators (i.e. we use an Einstein model). One can refine the

argument by using normal modes etc., but its essence is not altered by our

simplification. The initial wave function for one of these oscillators is

*(R,tfO) = (mcog /nh)1 4 exp[-mcog R2 /2h] (VII.5)

Here cog is the local harmonic frequency obtained from the force constant

2VgQRg 2. We use a coordinate system centered at R. When the electron is

promoted this wave function moves under the influence of the potential VP. For a

short time this motion can be treated by Heller's frozen Gaussian method[3b].

This means that at the time t the wave function has the form

*(Rt) - exp[-m(og (R-R(t))2 /2h] exp[iP(tXR-R(t))] (VII.6)

Since we want to calculate the decay of the overlap integral we ignore here the

phase factors and the normalization constant. A detailed analysis and an

algorithm based on these observations will be presented elsewhere[ 191 . The

overlap integral is
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f d4 (RWt MO) - ex (-P(tA oim] - exp(-(F t)21(2hcom)](VII.7)

We have used the fact that for a very short time the classical momentum P(t) = F t,

where F is the force given by (VII.8). We see that the earliest evolution of the

overlap integral for one atom of the medium is a Gaussian decay with time. The

time scale of this decay is

= (2h0)m)"42 IF (VII.8)

We can estimate the magnitude of this time as follows. In the local harmonic

approximation F = mmop(SR,)2 where cop is the oscillator frequency when the

electron is in the promoted state and 8Re is the difference Rp -Rg between the

equilibrium position Rp of the atom when the electron is in the promoted state and

the equilibrium position Rg when the electron is in the ground state.

Furthermore, 2h1(mcog) = (SR,) 2 where (SRg)2 is the mean square displacement of

the oscillator when the electron is in the ground state. Using these equations in

(VIL1) leads to the estimate

)Pr= ((O)g /O)p )) L 2(sRp/Me)

If we make the reasonable assumptions that (o. - Op and 8Rp<8Re then r is less
than O(o"1. If we take (op = 200 cm"1 and assume T - CO p" , the overlap integral is

equal to 0.014 in 75 femtoseconds. If the promotion of the electrons disturbs n = 10
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atoms, the spectrum depends on the product of the ten overlap integrals and the

decay time of the product is roughly t/n. Numerical calculations using Eq. (VIL7)

and the estimates explained above show that the product of ten Gaussians is equal

to 0.003 in a 7.5 femtoseconds. For n=12 the product is equal to 0.0001 in

3 femtoseconds. Within this short time the displacement of the heavy medium

atoms is very small and this justifies the local harmonic approximation and

makes the argument self-consistent.

The main observation here is that if the electron ( or the impurity degrees

of freedom generating the spectrum) is coupled to many nearby atoms, the time

needed to calculate the spectrum is extremely short. This is true regardless of

how slow (i.e. heavy) these atoms are, which is somewhat counter-intuitive. This

allows the use of simpler methods which treat accurately short time quantum

dynamics: the Gaussian wave packet method [3b], the expansion proposed by

DePristo et a [20], analytic continuation methods, quantum Monte Carlo methods

or the Magnus ( cumulant ) approximation. We are currently pursuing some of

these[ig1.

The fast decay of the product of overlap integrals also explains the failure

of the TQC method, which replaces this product with one. Paradoxically, a

method that was designed to help when the medium has many degrees of freedom

becomes less and less useful as the number of the mediums atoms that affect the

electron is increased. The only application left for the method, in the field of

absorption spectroscopy, is to the study of inhomogeneous broadening by static

disorder [2 11.
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Apenffix A Computational details

AA TIe 1iithal state

The initial ground state wave functions for both the exact quantum

calculation and the Hartree approximation is calculated by acting with the

exp(-zH' on an arbitrary wave function with the appropriate symmetry. As the

real number a becomes larger the result converges towards the ground state of

the Hamiltonian H. For propagation we use a method proposed by Fleck, Morris

and Feit[221.. The numerical procedure has been described by Hellsing, Nitzan

and Metiu [23 1 . Others[24] have used a very similar procedure in a different

context.

A.2 The time evolution of the promoted state

The quantum time propagation is performed with the algorithm of Fleck,

Morris and Feit [2 11 and the classical equation of motion is solved with the

Verlet [251 algorithm.

For the fully quantum calculations we have used a time step of 0.01 fs and

a spatial grid having 48X96 points with a spacing of 0.6 A in the r-coordinate and

0.067.A in the R-coordinate. The results were checked for convergence by making

the spatial and temporal steps smaller until the result did not change.

Increasing the number of points in the spatial grid shifted the ground state

energy of the electron by less than 1%. We typically propagate the system in time

for 100-300 fs. This space-time grid results in better than 0.1% conservation of

energy over a 100 fs time span for the quantum propagator.

In the Verlet algorithm[251 the time step of 0.01 fs was used. The total
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energy was conserved to better than 0.1% over 300 fs. The absorption cross section

converges when the number of trajectories is between 200 and 600.

Appandix B. Various formulae for the cros section.

Often the same approximation applied to several equivalent formulae

leads to procedures having different accuracy computer power requirements. As

shown below this happens when the TQC approximation is applied to the formula

giving the absorption cross section. We can write the correlation fimction used in

Chapter m as

C(t)= ('FgI r exp(iHt/h) r exp(-iHt/h) I 'Fg) (ip',t I r I Fglt)* . (B.1)

where I IFg) is the ground state at time zero, I 'Ig,t) is the ground state at time t,

and I %pt) is the promoted state (see Eqs. (M.3-4) for definition) at time t. If exact

quantum calculations are performed Eq. (B.1) is equivalent to Eqs. (111.2-4).

However if we make the same dynamical approximation in these equivalent

equations the results are different.

The Hartree approximation in Eq.(B.1) leads to

C(t) = (0gt I r I 3p,tXXgt I Xp,t)exp(i[rip(t)-1ig(t)]/h). (B.2)

To calculate a spectrum by this formula we must propagate (by TDH or by a TQC

method) both the ground and the promoted state.

We have found that, whether we use a TDH or a TQC method of

propagation this, this prescription works less well than the approach outlined in
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Section UI.

A similar form is obtained if we derive the Heller formula directly from

the time dependent perturbation theory. The state created by the laser is

proportional to

It
I %F,t) - J dtlU(t-t1 )F(t)U(tl) I

where IIF) is the ground state of the system,

F(t)=- -er.E(t),

and U(t) propagates the system's wave function (electromagnetic field not

included) from zero to t. The rate of growth of the population created by the laser,

which is essentially the absorption cross section is

d('F,t I ',t)/dt - t &Img I U(-t)F(t)*U(t-t)F(t)U(t1 ) I 'Fg)

This equation can be used whether the excitation is caused by a short pulse or by a

cw source. In the latter case the propagation time t determines the spectral

resolution. Applying the TDH or the TQC procedure to this equation, which is

equivalent to Heller formula, leads to yet another prescription. If the TQC

propagation scheme is used this procedure also leads to negative absorption

coefficients.
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FIGURE CAPTIONS

Fig. I A comparison of the absorption spectra obtained from Eq. 111.5 with T =

100fs, by using two methods for calculating C(t): (a) The correlation function C(t),

given by Eq. IM.9 was calculated with the time-dependent Hartree (TDH)

approximation; (b) C(t), given by Eq. (111.2) was calculated quantum

mechanically (i.e. no approximations). The spectrum, in arbitrary units, is

plotted versus photon energy in eV.

Fig. 2 A comparison of the absorption spectra obtained from Eq. M.5 with T = 100

fs by using two different methods for computing C(t): (a) the "traditional

quantum-classical (TQC) approximation with C(t) given by Eq. (IV.2) ; (b) the

time dependent Hartree (TDH) with C(t) given by Eq. (IH.9). The absorption

spectrum in arbitrary units is plotted versus photon energy in eV.

Fig. 3 The absorption spectra (in arbitrary units) versus energy (in eV) by

suppressing various components of the TDH correlation function ( Eq. 11.9 ):

(a) spectrum calculated by using Eq. (V.1) in which C(t) contains only the overlap

of the electron promoted wave function; (b) same as (a) but the contribution of the

Hartree phase is no longer removed from C(t) (we use Eq. (V.2) ); (c) same as (b)

but the amplitude of the nuclear wave function overlap is no longer suppressed

from C(t) ( we use Eq. (V.3)); (d) the spectrum without suppressing any

component of the overlap. This is the correct TDH spectrum which is close to the

correct fully quantal calculation.
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Fig. 4 A comparison of the absorption spectra obtained by using two different

methods for the calculation of C(t): (a) the classical wave function (QC)

approximation is used for the nuclear dynamics with C(t) given by Eq. (VI.14); (b)

time dependent Hartree (TDH) is used for the dynamics and C(t) is given by Eq.

(IIT.9). The absorption coefficient is in arbitrary units and the photon energy in

eV.
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